Saturday, May 28, 2022

FACE RECOGNITION + ATTENDANCE PROJECT | OpenCV Python | Computer Vision

sital
1SP11cs



Basic: 
import cv2
import face_recognition
imgElon = face_recognition.load_image_file('ImagesBasic/Elon Musk.jpg')
imgElon = cv2.cvtColor(imgElon,cv2.COLOR_BGR2RGB)
imgTest = face_recognition.load_image_file('ImagesBasic/Bill gates.jpg')
imgTest = cv2.cvtColor(imgTest,cv2.COLOR_BGR2RGB)
faceLoc = face_recognition.face_locations(imgElon)[0]
encodeElon = face_recognition.face_encodings(imgElon)[0]
cv2.rectangle(imgElon,(faceLoc[3],faceLoc[0]),(faceLoc[1],faceLoc[2]),(255,0,255),2)
faceLocTest = face_recognition.face_locations(imgTest)[0]
encodeTest = face_recognition.face_encodings(imgTest)[0]
cv2.rectangle(imgTest,(faceLocTest[3],faceLocTest[0]),(faceLocTest[1],faceLocTest[2]),(255,0,255),2)
results = face_recognition.compare_faces([encodeElon],encodeTest)
faceDis = face_recognition.face_distance([encodeElon],encodeTest)
print(results,faceDis)
cv2.putText(imgTest,f'{results} {round(faceDis[0],2)}',(50,50),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2)
cv2.imshow('Elon Musk',imgElon)
cv2.imshow('Elon Test',imgTest)
cv2.waitKey(0)




import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime
# from PIL import ImageGrab
path = 'ImagesAttendance'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)
def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList
def markAttendance(name):
with open('Attendance.csv','r+') as f:
myDataList = f.readlines()
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
f.writelines(f'n{name},{dtString}')
#### FOR CAPTURING SCREEN RATHER THAN WEBCAM
# def captureScreen(bbox=(300,300,690+300,530+300)):
#     capScr = np.array(ImageGrab.grab(bbox))
#     capScr = cv2.cvtColor(capScr, cv2.COLOR_RGB2BGR)
#     return capScr
encodeListKnown = findEncodings(images)
print('Encoding Complete')
cap = cv2.VideoCapture(0)
while True:
success, img = cap.read()
#img = captureScreen()
imgS = cv2.resize(img,(0,0),None,0.25,0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS,facesCurFrame)
for encodeFace,faceLoc in zip(encodesCurFrame,facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown,encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown,encodeFace)
#print(faceDis)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classNames[matchIndex].upper()
#print(name)
y1,x2,y2,x1 = faceLoc
y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
markAttendance(name)
cv2.imshow('Webcam',img)
cv2.waitKey(1)


Labeling Unknown faces

1
2
3
4
5
6
7
8
9
if matches[matchIndex]:
    name = classNames[matchIndex].upper()
    #print(name)
    y1,x2,y2,x1 = faceLoc
    y1, x2, y2, x1 = y1*4,x2*4,y2*4,x1*4
    cv2.rectangle(img,(x1,y1),(x2,y2),(0,255,0),2)
    cv2.rectangle(img,(x1,y2-35),(x2,y2),(0,255,0),cv2.FILLED)
    cv2.putText(img,name,(x1+6,y2-6),cv2.FONT_HERSHEY_COMPLEX,1,(255,255,255),2)
    markAttendance(name)

To find the unknown faces we will replace

with this

All this does is to check if the distance to our min face is less than 0.5 or not. If its not then this means the person is unknown so we change the name to unknown and don’t mark the attendance.

https://www.computervision.zone/topic/labeling-unknown-faces/
 

No comments:

Post a Comment

Introduction to Keras and TensorFlow for Training Deep Learning Classifiers

 ### Introduction to Keras and TensorFlow for Training Deep Learning Classifiers **Keras and TensorFlow** are powerful tools in the realm of...