Sunday, May 29, 2022

Project FACE RECOGNITION + ATTENDANCE PROJECT | OpenCV Python | Computer Vision

 

Basic

import cv2
import numpy as np
import face_recognition

imgObama = face_recognition.load_image_file('ImageBasic/obama.jpg')
imgObama = cv2.cvtColor(imgObama, cv2.COLOR_BGR2RGB)

imgTest = face_recognition.load_image_file('ImageBasic/obama3.jpg')
imgTest = cv2.cvtColor(imgTest, cv2.COLOR_BGR2RGB)

faceLoc = face_recognition.face_locations(imgObama)[0]
encodeObama = face_recognition.face_encodings(imgObama)[0]
# print(faceLoc)
cv2.rectangle(imgObama, (faceLoc[3], faceLoc[0]), (faceLoc[1], faceLoc[2]), (255, 0, 255), 2)

faceLocTest = face_recognition.face_locations(imgTest)[0]
encodeTest = face_recognition.face_encodings(imgTest)[0]
# print(faceLoc)
cv2.rectangle(imgTest, (faceLoc[3], faceLoc[0]), (faceLoc[1], faceLoc[2]), (255, 0, 255), 2)

results = face_recognition.compare_faces([encodeObama], encodeTest)
faceDis = face_recognition.face_distance([encodeObama], encodeTest)
print(results, faceDis)
cv2.putText(imgTest, f'{results} {round(faceDis[0], 2)}', (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)

# print(results)


cv2.imshow('obama', imgObama)
cv2.imshow('obama Test', imgTest)
cv2.waitKey(0)

Attandance 

import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime

# from PIL import ImageGrab

path = 'ImagesAttendance'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)


def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList


def markAttendance(name):
with open('Attendance.csv','r+') as f:
myDataList = f.readlines()
#print(myDataList)
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
f.writelines(f'\n{name},{dtString}')

#markAttendance('sital')

encodeListKnown = findEncodings(images)
#print('Encoding Complete')


#web cam
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)

facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)

for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print(faceDis)
matchIndex = np.argmin(faceDis)

if matches[matchIndex]:
name = classNames[matchIndex].upper()
#print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)

cv2.imshow('Webcam', img)
#cv2.waitKey(1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break

#AttandeceExcel-2

import cv2
import numpy as np
import face_recognition
import os
from datetime import datetime

# from PIL import ImageGrab

path = 'ImagesAttendance'
images = []
classNames = []
myList = os.listdir(path)
print(myList)
for cl in myList:
curImg = cv2.imread(f'{path}/{cl}')
images.append(curImg)
classNames.append(os.path.splitext(cl)[0])
print(classNames)


def findEncodings(images):
encodeList = []
for img in images:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
encode = face_recognition.face_encodings(img)[0]
encodeList.append(encode)
return encodeList


def markAttendance(name):
with open('Attendance.csv','r+') as f:
myDataList = f.readlines()
#print(myDataList)
nameList = []
for line in myDataList:
entry = line.split(',')
nameList.append(entry[0])
if name not in nameList:
now = datetime.now()
dtString = now.strftime('%H:%M:%S')
f.writelines(f'\n{name},{dtString}')

#markAttendance('sital')

encodeListKnown = findEncodings(images)
#print('Encoding Complete')


#web cam
cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)

while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)

facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)

for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print(faceDis)
matchIndex = np.argmin(faceDis)

if matches[matchIndex]:
name = classNames[matchIndex].upper()
#print(name)
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(img, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(img, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
markAttendance(name)

cv2.imshow('Webcam', img)
#cv2.waitKey(1)
if cv2.waitKey(1) & 0xFF == ord('q'):
break


No comments:

Post a Comment

Introduction to Keras and TensorFlow for Training Deep Learning Classifiers

 ### Introduction to Keras and TensorFlow for Training Deep Learning Classifiers **Keras and TensorFlow** are powerful tools in the realm of...